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Abstract

Modern machine learning suffers from catastrophic forget-
ting when learning new classes incrementally. The perfor-
mance dramatically degrades due to the missing data of old
classes. Incremental learning methods have been proposed to
retain the knowledge acquired from the old classes, by using
knowledge distilling and keeping a few exemplars from the
old classes. However, these methods struggle in real world
data.We believe this is because of the combination of two fac-
tors: (a) the data imbalance between the old and new classes,
and (b) the increasing number of visually similar classes. Dis-
tinguishing between an increasing number of visually simi-
lar classes is particularly challenging, when the training data
is unbalanced. Inspired by Influence Function (IF), we first
study example influence via adding perturbation to example
weight and computing the influence derivation.Moreover,We
found that the last fully connected layer has a strong bias
towards the new classes, and this bias can be corrected by
a linear model,finally, we used meta-learning and the influ-
ence function (IF) to select significant samples for incremen-
tal learning. Empirical results show that our algorithm signif-
icantly outperforms state-of-the-art methods on class- incre-
mental benchmark CL datasets.

Introduction
Natural learning systems are inherently incremental where
new knowledge is continuously learned over time while ex-
isting knowledge is maintained (Rebuffi et al. 2017; Li and
Hoiem 2017). Many computer vision applications in the real
world require incremental learning capabilities. For exam-
ple, a face recognition system should be able to add new per-
sons without forgetting the faces already learned. However,
most deep learning approaches suffer from catastrophic for-
getting (McCloskey and Cohen 1989) — a significant per-
formance degradation, when the past data are not available.

The missing data for old classes introduce two challenges
— (a) maintaining the classification performance on old
classes, and (b) balancing between old classes and new
classes. Distillation (Li and Hoiem 2017; Rebuffi et al. 2017;
Castro et al. 2018) has been used to effectively address the
former challenge. Recent studies (Rebuffi et al. 2017; Castro
et al. 2018) also show that selecting a few exemplars from
the old classes can alleviate the imbalance problem. These
methods perform well on small datasets. However, they suf-
fer from a significant performance degradation when the

number of classes becomes large (e.g. thousands of classes).
Why is it more challenging to handle a large number of

classes for incremental learning? We believe this is due to
the coupling of two factors. First, the training data are un-
balanced. Secondly, as the number of classes increases, it
is more likely to have visually similar classes (e.g. multi-
ple dog classes in ImageNet) across different incremental
steps. Under the incremental constraint with data imbalance,
the increasing number of visually similar classes is particu-
larly challenging since the small margin around the bound-
ary between classes is too sensitive to the data imbalance.
The boundary is pushed to favor classes with more samples.

The sequential paradigm in CL means CL does not ac-
cess past training data. Comparing to traditional machine
learning, the training data in CL is thus more precious. It is
valuable to explore the influence difference among training
examples. Following the accredited influence chain “Data-
Model-Performance”, exploring this difference is equivalent
to tracing from performance back to example difference.
With appropriate control, this may improve the learning pat-
tern towards better performance.

In this work, we present a method to address the data im-
balance problem in large scale incremental learning. Firstly,
we found a strong bias towards the new classes in the classi-
fier layer (i.e. the last fully connected layer) of the convolu-
tion neural network (CNN).Based upon this finding, we pro-
pose a simple and effective method, called BiC (bias correc-
tion), to correct the bias. We add a bias correction layer after
the last fully connected (FC) layer (shown in Fig. 1), which
is a simple linear model with two parameters. The bias cor-
rection layer is learned at the second stage, after learning the
convolution layers and FC layer at the first stage. The data,
including exemplars from the old classes and samples from
the new classes, are split into a training set for the first stage
and a validation set for the second stage. The validation set
is helpful to approximate the real distribution of both old and
new classes in the feature space, allowing us to estimate the
bias in FC layer. We found that the bias can be effectively
corrected with a small validation set.On the other hand,the
example influence can be directly used to control the mag-
nitude of training loss for each example. Also, we utilize a
meta-learning approach to help incremental learning and se-
lect those samples that are important to store by means of an
influence function (IF).



Figure 1: Overview of our method. The exemplars from the
old classes and the samples of the new classes are split into
training and validation sets. The training set is used to train
the convolution layers and FC layer (in stage 1). The valida-
tion set is used for bias correction (in stage 2).

Our method achieves remarkably good performance, es-
pecially on large scale datasets. The experimental results
show that our method outperforms state-of-the-art algo-
rithms.

Related Work
Incremental learning has been a long standing problem
in machine learning (Cauwenberghs and Poggio 2000;
Mensink et al. 2013; Kuzborskij, Orabona, and Caputo
2013). Before the deep learning took off, people had been
developing incremental learning techniques by leverag-
ing linear classifiers, ensemble of weak classifiers, nearest
neighbor classifiers, etc. Recently, thanks to the exciting
progress in deep learning, there has been a lot of research
on incremental learning with deep neural network models.
The work can be roughly divided into three categories de-
pending on whether they require real data or synthetic data
or nothing from the old classes.

Without using old data: Methods in the first category
do not require any old data. (Jung et al. 2016) presented a
method for domain transfer learning. They try to maintain
the performance on old tasks by freezing the final layer and
discouraging the change of shared weights in feature extrac-
tion layers. (Kirkpatrick et al. 2017) proposed a technique to
remember old tasks by constraining the important weights
when optimizing a new task. One limitation of this approach
is that the old and new tasks may conflict on these important
weights. (Li and Hoiem 2017) presented a method that ap-
plies knowledge distillation (Hinton et al. 2015) to maintain
the performance on old tasks. (Li and Hoiem 2017) sepa-
rated the old and new tasks in multi-task learning, which is
different from learning classifier incrementally. (Shmelkov,
Schmid, and Alahari 2017) applied knowledge distillation
for learning object detectors incrementally. (Rannen et al.
2017) utilized autoencoder to retain the knowledge from old
tasks. (Sun et al. 2018; Sun, Cong, and Xu 2018) updated
knowledge dictionary for new tasks and kept dictionary co-
efficients for old tasks.

Using synthetic data: Both (Shin et al. 2017) and
(Venkatesan et al. 2017) employed GAN (Goodfellow et al.
2020) to replay synthetic data for old tasks. (Shin et al. 2017)
applied cross entropy loss on synthesis data with the old
solver’s response as the target. (Venkatesan et al. 2017) uti-

lized a root mean-squared error for learning the response of
old tasks on synthetic data. (Shin et al. 2017; Venkatesan
et al. 2017) highly depends on the capability of generative
models and struggles with complex objects and scenes.

Using exemplars from old data: Methods in the third
category require part of the old data. (Rebuffi et al. 2017)
proposed a method to select a small number of exemplars
from each old class. (Castro et al. 2018) keeps classifiers
for all incremental steps and used them as distillation. It in-
troduces balanced fine-tuning and temporary distillation to
alleviate the imbalance between the old and new classes.
(Lopez-Paz and Ranzato 2017) proposed a continuous learn-
ing framework where the training samples for different tasks
are used one by one during training. It constrains the cross
entropy loss on softmax outputs of old tasks when the new
task comes. (Xiao et al. 2014) proposed a training method
that grows a network hierarchically as new training data are
added. Similarly, (Rusu et al. 2016) increases the number of
layers in the network to handle new coming data.

Example Influence: In recent years, as the impressive
Interpretable Machine Learning (IML) develops, people re-
alize the importance of exploring the nature of data-driven
machine learning. Examples are different, even they belong
to the same distribution. Because of such difference, the
example contributes differently to the learning pattern. In
other words, the influence acquired in advance from dif-
ferent training examples can significantly improve the CL
training. In contrast to complicated model design, a model-
agnostic algorithm estimates the training example influence
via computing the derivation from a test loss to a training
data weight. One typical example method is the Influence
Function , which leverages a pure second-order derivation
(Hessian) with the chain rule. In this paper, to avoid the ex-
pensive computation of Hessian inverse, we design a meta
learning based method, which can be used to control the
training.

Methodology
In this section, we describe our model in detail. We first in-
troduce a Bias Correction Layer(Bic) to deal with the im-
banced problem in the validation set and new data. Then, we
present our Example Influence on Stability and Plasticity in
incremental learning,Finally,we discuss the Meta Learning
on Stability and Plasticity and come up with an indicator to
select the important samples are good for the incremental
learning.

Rehearsal-based CL
Given T different tasks w.r.t. datasets {D1, · · · , DT }, Con-
tinual Learning (CL) seeks to learn them in sequence. For
the t-th dataset (task), Dt = {(x(n)

t , y
(n)
t )}Nt

n=1 is split into
a training set Dtrn

t and a test set Dtst
t , where Nt is the num-

ber of examples. At any time, CL aims at learning a multi-
task/multi-class predictor to predict tasks/classes that have
been learned (say task-incremental and class-incremental
CL). To suppress the catastrophic forgetting, the rehearsal-
based CL builds a small size memory buffer Mt sampled
from Dtrn

t for each task (, |Mt| ≪ |Dtrn
t |). At training phase,
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Figure 2: Diagram of bias correction. Since the number of
exemplars from old classes is small, they have narrow distri-
butions on the feature space. This causes the learned classi-
fier to prefer new classes. Validation samples, not involved
in training feature representation, may better reflect the un-
biased distribution of both old and new classes in the feature
space. Thus, we can use the validation samples to correct the
bias. (Best viewed in color)

the data in the whole memory M = ∪k<tMk will be re-
trained together with the current tasks. Accordingly, a mini-
batch training step of task t in rehearsal-based CL is denoted
as

min
θt

ℓ(Bold ∪Bnew, θt), (1)

where ℓ is the empirical loss. θt is the trainable parameters
at task t and is updated from scratch.

Validation Set
We estimate the bias by using a small validation set. The
basic idea is to exclude the validation set from training the
feature representation, allowing them to reflect the unbiased
distribution of both old and new classes on the feature space
(shown in Fig. 2). Therefore, we split the exemplars from
the old classes and the samples from the new classes into a
training set and a validation set. The training set is used to
learn the convolution and fully connected layers (see Fig. 1),
while the validation set is used for the bias correction.

Fig. 1 illustrates the generation of the validation set. The
stored exemplars from the old classes are split into a training
subset (referred to trainold) and a validation subset (referred
to valold). The samples for the new classes are also split
into a training subset (referred to trainnew) and a validation
subset (referred to valnew). trainold and trainnew are used
to learn the convolution and FC layers (see Fig. 1). valold
and valnew are used to estimate the parameters in the bias
correction layer. Note that valold and valnew are balanced.

Bias Correction Layer
The bias correction layer should be simple with a small num-
ber of parameters, since valold and valnew have small size.
Thus, we use a linear model (with two parameters) to cor-
rect the bias. This is achieved by adding a bias correction
layer in the network (shown in Fig. 1). We keep the output
logits for the old classes (1, . . . , n) and apply a linear model
to correct the bias on the output logits for the new classes
(n+ 1, . . . , n+m) as follows:

qk =

{
ok 1 ≤ k ≤ n

αok + β n+ 1 ≤ k ≤ n+m
, (2)

where α and β are the bias parameters on the new classes
and ok is the output logits for the k-th class. Note that the
bias parameters (α, β) are shared by all new classes, allow-
ing us to estimate them with a small validation set. When
optimizing the bias parameters, the convolution and fully
connected layers are frozen. The classification loss (softmax
with cross entropy) is used to optimize the bias parameters
as follows:

Lb =−
n+m∑
k=1

δy=k log[softmax(qk)]. (3)

We found that this simple linear model is effective to cor-
rect the bias introduced in the fully connected layer.

Example Influence on Stability and Plasticity
Stability and Plasticity
Suppose the parameter of a model is initialized to θ0. At
the training on the t-th task, given test sets of an old task
Dtst

k (k < t) and the current task Dtst
t , the Stability Sk

t and
Plasticity Pt can be evaluated by:

Sk
t = p(Dtst

k |θt−1, D
trn
t )− p(Dtst

k |θk),
Pt = p(Dtst

t |θt−1, D
trn
t )− p(Dtst

t |θt−1),

where p(D1|θ,D2) represents the performance (accuracy in
classification) of D1 conditioned to the model θ training
on D2. p(D|θ) denotes the performance of D tested on the
model θ.

The S of a task is evaluated by the performance differ-
ence on the test set after training on any later tasks, which is
also known as Forgetting. The P of a task is defined as the
ability to integrate new knowledge, which is regarded as the
test performance of this task. As many existing CL methods
demonstrate, the SP inevitably interferes mutually.

Example Influence on SP
At the training on the t-th task, with a sampled example
xtrn ∈ Dtrn

t , the example influence from xtrn to Stability
Sk
t and Plasticity Pt for k < t can be evaluated by the gap

from deleting it then retraining the model:

IS(D
tst
k , xtrn)

= p(Dtst
k |θt−1, D

trn
t )− p(Dtst

k |θt−1, D
trn
t /xtrn),

IP (D
tst
t , xtrn)

= p(Dtst
t |θt−1, D

trn
t )− p(Dtst

t |θt−1, D
trn
t /xtrn),

where Dtrn
t /xtrn denotes the dataset Dtrn

t without the train-
ing example xtrn.

However, deleting every example to compute full influ-
ences is impractical due to the highly computational cost.
Instead, the performance change can be indicated by the loss
change, which leads to a derivable way to approximate the
influence:

IS(D
tst
k , xtrn)

def
=

∂ℓ(Dtst
k )

∂ϵ
,

IP (D
tst
t , xtrn)

def
=

∂ℓ(Dtst
t )

∂ϵ
,

(4)



where ϵ is the weight perturbation to the training example
and def

= means define. This influence can be computed by the
Influence Function that will be introduced in the next sec-
tion.

Meta Learning on Stability and Plasticity
Influence Function for SP
A mini-batch, B, from the training data is sampled, and the
normal model update is

θ̂ = argmin
θ

ℓ (B, θ) . (5)

In Influence Function (IF), a small weight perturbation ϵ
is added to the training example xtrn ∈ B

θ̂ϵ,x = argmin
θ

ℓ (B, θ) + ϵℓ(xtrn, θ), xtrn ∈ B. (6)

We can easily promote this to the mini-batch

θ̂E,B = argmin
θ

ℓ (B, θ) + E⊤L(B, θ), (7)

where L denotes the loss vector for a mini-batch and E ∈
R|B|×1 denotes the perturbation on each example in it. It is
easy to know that the example influence I(Dtst, B) is re-
flected in the derivative∇Eℓ(D

tst, θ̂E,x)
∣∣
E=0

. By the chain
rule, the example influence in IF can be computed by

I(Dtst, B)
def
= ∇Eℓ(D

tst, θ̂E,x)
∣∣
E=0

= −∇θℓ(D
tst, θ̂)H−1∇⊤

θ L(B, θ̂),
(8)

whereH = ∇2
θℓ(B, θ̂) is a Hessian. Unfortunately, the in-

verse of Hessian requires the complexity O(|B|q2+ q3) and
huge storage for neural networks (maybe out-of-memory),
which is challenging for efficient training.

In Eq. (8), we have I(Dtst, B) = [I(Dtst, xtrn)|xtrn ∈ B]
and find the loss will get larger if I(Dtst, xtrn) > 0, which
means the negative influence on the test set Dtst. Similarly,
I(Dtst, xtrn) < 0 means the positive influence on the test
set Dtst. Fortunately, the second-order derivation in IF is
not necessary under the popular meta learning paradigm,
instead we can easily get the derivation like IF through a
one-step pseudo update. In the following, we will introduce
a simple yet effective meta-based method, named MetaSP,
to simulate IF at each step with a two-level optimization to
avoid computing Hessian inverse.

Simulating IF for SP
Based on the meta learning paradigm, we transform the ex-
ample influence computation into solving a meta gradient
descent problem, named MetaSP. For each training step in a
rehearsal-based CL, we have two mini-batches data Bold and
Bnew in respect to old and new tasks. Our goal is to obtain
the influence on S and P from every example in Bold ∪Bnew.
Note that both S-aware and P-aware influence are applied to
every example regardless of old or new tasks. That is, the
contribution of an example is not deterministic. Data of old
tasks may also affect the new task in positive, and vice-versa.
In rehearsal-based CL, we turn to computing the derivations
∇Eℓ(Vold, θ̂)|E=0 for example influence. To compute the

Algorithm 1: Computation of Example Influence
(MetaSP)

Input: Bold, Bnew, Vold, Vnew ; // Training
batches, Validation batches

Output: I∗ ; // Pareto example influence
on SP

1 θ̂E,B = argminθ ℓ(Bold ∪Bnew, θ) + E⊤L(Bold ∪
Bnew, θ) +Bic(Vold ∪ Vnew, θ) ; // Pseudo
update

2 I(Vold, B) = ∇Eℓ(Vold, θ̂E,B) ; // Gradient
from old val loss

3 I(Vnew, B) = ∇Eℓ(Vnew, θ̂E,B); // Gradient
from new val loss

4 γ∗ ← Eq. (13); // Optimal fusion
hyper-parameter

5 I∗ = γ∗ · I(Vold, B) + (1− γ∗) · I(Vnew, B);
// Influence fusion

derivation, as shown in Fig.3(a), our MetaSP has two key
steps:

(1) Pseudo update. This step is to simulate Eq. (7) in IF
via a pseudo update

θ̂E,B = argmin
θ

ℓ(Bold ∪Bnew, θ)

+ E⊤L(Bold ∪Bnew, θ),
(9)

where L denotes the loss vector for a mini-batch combining
both old and new tasks.

(2) Compute example influence. This step computes ex-
ample influence on S and P for all training examples as
simulating Eq. (8). Based on the pseudo updated model in
Eq. (9), we compute S- and P-aware example influence via
two validation sets Vold and Vnew. Noteworthily, because the
test set Dtst is unavailable at training phase, we use two dy-
namic validation sets Vold and Vnew to act as the alternative
in the CL training process. One is sampled from the mem-
ory buffer (Vold) representing the old tasks, and the other is
from the seen training data representing the new task (Vnew).
With E initialized to 0, the two kinds of example influence
are computed as

I(Vold, B) = ∇Eℓ(Vold, θ̂E,B),

I(Vnew, B) = ∇Eℓ(Vnew, θ̂E,B).
(10)

Generally, each elements in two influence vectors
I(Vold, B) and I(Vnew, B) represents the example influence
on S and P. Similar to IF, elements with positive value mean
negative influence while elements with negative value mean
positive influence.

Using Influence for Continual Learning
Before Using: Influence for SP Pareto Optimality
As shown in Eq. (10), the example influence is equal to
the derivation from validation loss of old and new tasks to
the perturbations E. However, the two kinds of influence



Task t-1

a b c…

Task t

a b a b … a b a b c

Task t+1

a b …a b

Continual  Learning

Training  Data

Input

…

…

（a） Influence  Acquirement  in  Mini-Batch

Training  Data

Input

（b）Model  update  with  example  influence

Cluster

(c)Rehearsal  selection  with  example  influence

Store

Better  SP  

influence

Worse  SP  

influence

Drop

New  Task  Dataset

Pseudo  update

Diff  IF

Fusion  IF

Virtual  update

bic

bic

Figure 3: Evaluating and making use of example influence in mini-batch Continual Learning. (a) At each iteration in CL
training, MetaSP updates in pseudo and use two validation sets representing old tasks and new task to obtain the example
influence on S and P. The two kinds of influence are fused towards a Pareto optimal. (b) The computed influence can be directly
used to update CL model and (c) select examples for rehearsal storing and dropping.

are independent and interfere with each other. That is, us-
ing only one of them may fail the other performance. We
prefer to find a solution that makes a trade-off between the
influence on both S and P. Thus, we integrate the two in-
fluence I(Vold, B) and I(Vnew, B) into a DOO problem with
two gradients from different objectives.

min
E

{
ℓ(Vold, θ̂E,B), ℓ(Vnew, θ̂E,B)

}
. (11)

The goal of Problem (11) is to obtain a fused way that
satisfies the SP Pareto optimality.

SP Pareto Optimality
Pareto Dominate Let Ea, Eb be two solutions for Prob-
lem (11), Ea is said to dominate Eb (Ea ≺ Eb) if and
only if ℓ(V, θ̂Ea,B) ≤ ℓ(V, θ̂Eb,B), ∀V ∈ {Vold, Vnew}, and
ℓ(V, θ̂Ea,B) < ℓ(V, θ̂Eb,B), ∃V ∈ {Vold, Vnew} .
SP Pareto Optimal E is called SP Pareto optimal if no
other solution can have better values in ℓ(Vold, θ̂E,B) and
ℓ(Vnew, θ̂E,B).

Inspired by the Multiple-Gradient Descent Algorithm
(MGDA), we transform Problem (11) to a min-norm prob-

lem. Specifically, according to the KKT conditions, we have

γ∗= argmin
γ

∥∥γ∇Eℓ(Vold, θ̂E,B)+

(1− γ)∇Eℓ(Vnew, θ̂E,B)
∥∥2
2
,

s.t., 0 ≤ γ ≤ 1.

(12)

Referring to the study from Sener, the optimal γ∗ is easily
computed as

γ∗ = min

(
max

(
(∇Eℓ(Vnew, θ̂E,B)

∥∇Eℓ(Vnew, θ̂E,B)∥22
, 0

)
, 1

)
. (13)

Thus, the SP Pareto influence of the training batch can be
computed by

I∗ = γ∗ · I(Vold, B) + (1− γ∗) · I(Vnew, B). (14)

This process can be seen in Fig.3(a). Different from the
S-aware and P-aware influence, the integrated influence con-
sider the Pareto optimum to both S and P, , reducing the neg-
ative influence on S or P and keeping the positive influence
on both S and P. Then we will introduce how to leverage ex-
ample influence in CL training, our algorithm can be seen in
Alg. 1.

Model Update Using Example Influence
With the computed example influence in each mini-batch,
we can easily control the model update of this mini-batch to



Algorithm 2: Using Example Influence in
Rehearsal-based Continual Learning.

Input: Initialized θ0, Learning rate α, Training set
{Dtrn

1 , · · · , Dtrn
T }, Memory M

Output: θT ; // Final model
1 for task t = 1 : T do
2 2 θt= TrainNewTask(θt−1, Dtrn

t , M ) (Alg. 3)
3 C1, C2, · · · , C |M|

t
← K-Means(Dtrn

t );
4 Rank Ci with E(I∗(x)), x ∈ Ci;
5 Rank M with E(I∗(x)), x ∈M ;
6 for i = 1 : |M |

t do
7 Pop the bottom of M ;
8 Push the top of Ci to M ;
9 end

10 end

adjust the training towards an ensemble positive direction.
Given parameter θ from the previous iteration the step size
α, the model can be updated in traditional SGD as θ∗ =
θ−α·∇θ (ℓ(B, θ)), where B = Bold∪Bnew. By regularizing
the update with the example influence I∗ , we have

θ∗ = θ − α · ∇θ

(
ℓ(B, θ) + (−I∗)⊤L(B, θ)

)
. (15)

MetaSP offers regularized updates at every step for
rehearsal-based CL, which leads the CL training to better
SP but with only the complexity of O(|B|q+ vq) (v denotes
the validation size) compared with that of IF, O(|B|q2+q3).

We show this application in Fig.3(b). By updating like the
above equation, we can make use of the influence of each ex-
ample to a large extent. In this way, some useless examples
are restrained and some positive examples are emphasized,
which may improve the acquisition of new knowledge and
the maintenance of old knowledge simultaneously.

Algorithm 3: Training New Task
Input: Initialized θt, Training set Dtrn

t , Memory M ,
Learning rate α

Output: Trained θt
1 for i = 1 :ITER_NUM do
2 Bnew ∼ Dtrn

t ;
3 if t = 1 then
4 θt = θt − α · ∇θℓ(Bnew, θt);
5 else
6 Bold ∼M , Vold ∼M , Vnew ∼ Dtrn

t ;
7 I∗ ←METASP(Bold, Bnew, Vold, Vnew);
8 θt = θt − α · ∇θ(ℓ(Bold ∪Bnew, θt)

9 +(−I∗)⊤L(Bold ∪Bnew, θt));
10 end
11 end

Rehearsal Selection Using Example Influence
Rehearsal in fixed budget needs to consider storing and
dropping to keep the memory M having the core set of all
old tasks. In tradition, storing and dropping are both based
on randomly example selection, which ignores the influence
difference on SP from each example. Given influence I∗(x)

representing contributions from example x to SP, we further
design to use it to improve the rehearsal strategy under fixed
memory budget. The above example influence on S and P
is computed in mini-batch level, we can promote it to the
whole dataset according to the law of large numbers, and the
influence value for the example x is the value of expectation
over batches, , E(I∗(x)).

The fixed-size memory is divided averagely by the seen
task number. After task t finishes its training, we conduct
our influence-aware rehearsal selection strategy as shown in
Fig.3(c). For storing, we first cluster all training data into
|M |
t groups using K-means to diversify the store data. Each

group is ranked by its SP influence value, and the most posi-
tive influence on both SP will be selected to store. For drop-
ping, we rank again on the memory buffer via their influence
value, and drop the most negative |M |

t example. In this way,
M always stores diverse examples with positive SP influ-
ence.

Experiments
In this section we first introduce the experimental setup and
then we evaluate our method .

Experimental Setup
We perform experiments on two datasets. cifar-100 and
ImageNet-Subset with 100 classes. we use a public im-
plementation of existing CIL methods from the framework
FaCIL [27] and implement our BicIFCIL methods in the
same framework for a fair comparison. We follow the ap-
proach of LUCIR and PODNET by starting with a large first
task with half of the classes in each dataset and equally dis-
tributing the remaining classes in subsequent tasks. We use
ResNet-32 for CIFAR-100 and ResNet-18 for ImageNet-
Subset. we use an initial learning rate of 0.1 and divide it
by 10 after 80 and 120 calendar hours (160 calendar hours
in total) for CIFAR-100. for ImageNet-Subset, the learning
rate starts at 0.1 started and divided by 10 after 30 and 60
calendar hours (90 calendar hours in total). The batch size
for all experiments was 128. for the second phase of train-
ing, the learning rate was set to 0.1 and we trained for 30
calendar hours. For the datasets used in the experiments, we
first performed an imbalance cut with an imbalance factor of
0.01.We arranged these data in a shuffled and ordered way
in incremental learning.

We used the average precision of all categories and the
average incremental precision of all tasks as evaluation met-
rics. We first evaluated different methods in the imbalanced-
CIL scenario with an imbalance rate rho = 0.01 and 20 ex-
amples per category.

Results for our method
Our method for Imbalanced-CIL. In Table 2we integrate
our proposed two-stage strategy into three existing meth-
ods: EEIL, LUCIR (with CNN classifier), and PODNET. In
general, the two-stage strategy helps on all three methods
in both 5- and 10-task settings. The improvement is espe-
cially noticeable in the Shuffled imbalanced-CIL scenario.
Specifically, for EEIL, our method only improves by a small



CIFAR-100 ImageNet-Subset
Methods

5 tasks 10 tasks 5 tasks 10 tasks

O
rd

er
ed

EEIL 38.46 37.50 50.68 50.63

+ (Ours) 38.97+0.51 37.58+0.08 51.36+0.68 50.74+0.11

LUCIR 42.69 42.15 52.91 52.80

+ (Ours) 45.88+3.19 45.73+3.58 54.22+1.31 55.41+2.61

PODNET 44.07 43.96 58.78 58.94

+ (Ours) 44.38+0.31 44.35+0.39 58.82+0.04 59.09+0.15

Sh
uf

fle
d

EEIL 31.91 32.44 42.87 43.72

+ (Ours) 34.19+2.28 33.70+1.26 49.31+6.44 48.26+4.54

LUCIR 35.09 34.59 45.80 46.52

+ (Ours) 39.40+4.31 39.00+4.41 52.08+6.28 51.91+5.39

PODNET 34.64 34.84 49.69 51.05

+ (Ours) 36.37+1.73 37.03+2.19 51.55+1.86 52.60+1.55

C
on

ve
nt

io
na

l

EEIL 57.41 54.22 53.84 47.30

+ (Ours) 59.10+1.69 56.91+2.69 57.45+3.61 53.40+6.10

LUCIR 61.15 58.74 67.21 65.04

+ (Ours) 63.48+2.33 60.57+1.83 68.82+1.61 67.44+2.40

PODNET 63.15 61.16 70.13 65.66

+ (Ours) 64.58+1.43 62.63+1.47 71.08+0.95 68.47+2.81

Table 1: Comparison of average incremental accuracy on CIFAR-100 and ImageNet-Subset in the imbalanced-CIL and con-
ventional CIL scenarios.

margin on Ordered imbalanced-CIL scenario but boosts sig-
nificantly on Shuffled imbalanced-CIL. It outperforms EEIL
by 2.28 and 1.26 on CIFAR-100 when T = 5 and T = 10, re-
spectively for Shuffled imbalanced-CIL. The improvement
is even larger on ImageNet-Subset with 6.44 and 4.54 im-
provement in absolute accuracy. For LUCIR, we see a con-
sistent boost by adding our method, improving from 1.31
to 6.28 for CIFAR-100 and ImageNet-Subset, respectively.
PODNET is the best baseline in most scenarios where we
observe a smaller gain with our proposed method compared
to LUCIR. Overall, PODNET and LUCIR with our method
can achieve very competitive results, which improves the
consistency for both Ordered imbalanced-CIL and Shuffled
imbalanced-CIL.

Our method for conventional CIL. Surprisingly, as seen
in Table 1, when we combine ours with existing methods the
performance is improved not only in imbalanced-CIL sce-
narios but also for conventional CIL. We believe this is due
to the imbalance caused by limited memory for storing ex-
emplars from previous tasks.

Results on real-world imbalanced dataset We experi-
ment with 100 classes chosen from the iNaturalist dataset.
We randomly chose 100 classes from the pantae super cate-
gory and tested LUCIR and LUCIR+ with the data seperated
into 5 tasks with a base task of 50 classes. Results show that
LUCIR can achieve an accuracy of 32.34%, and LUCIR+
with two stage training about 1.46% higher. iNaturalist is a
real-world dataset with imbalanced distribution, and thus the
value of ρ is undefined. We estimate it to be about 0.01. It
shows how our method perform in real-world dataset under

imbalanced distribution.

Conclusion
In this paper we proposed two novel scenarios for
class incremental learning over imbalanced distributions
(Imbalanced-CIL). Ordered imbalanced considers the case
where subsequent tasks contain consistently fewer samples
than previous ones. Shuffled Imbalanced-CIL, on the other
hand, refers to the case in which the degree of imbalance for
each task is different and randomly distributed. Our exper-
iments demonstrate that the existing state-of-the-art in CIL
is significantly less robust when applied to long-tailed class
distribution. To address the problem of imbalanced-CIL, we
propose a meta-learning method with a learnable Bias Cor-
rection Layer scaling layer that compensates for class im-
balance. Our approach significantly outperforms the state-
of-the-art on CIFAR-100 and ImageNet100 with long-tailed
class imbalance. Our approach is complimentary to exist-
ing methods for CIL and can be easily and profitably inte-
grated into them. We believe that our work can serve as a test
bed for future development of imbalanced class incremental
learning.
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